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Abstract-An analysis of the dispersion of a solute in an incompressible, viscous, electrically conducting 
fluid flowing between two non-conducting plates, under the action of a transverse magnetic field has been 
carried out on the assumption of an homogeneous irreversible first-order chemical reaction and hetero- 
geneous reaction. Expressions for the effective Taylor diffusion coefficient have been derived in both cases. 
It is observed that the effective Taylor diffusion coefficient decreases due to an increase in the homogeneous 
reaction rate constant and also due to an increase in the heterogeneous reaction at the catalytic walls. 
An increase in M, the Hartmann number, leads to a decrease in the effective Taylor diffusion coefficient 
whereas an increase in K. the loading parameter, leads to an increase in the effective Taylor diffusion 

coefficient. 

NOMENCLATURE 

magnetic induction ; 
concentration of the solute ; 
molecular diffusion coefficient ; 
Taylor diffusion coefficient; 
electric field ; 
half-width of the channel ; 
loading parameter; 
first-order reaction rate constant; 
characteristic length ; 
Hartmann number ; 
pressure ; 
volume rate of the transport of the solute ; 
time, (L/ii) ; 
time ; 
axial velocity ; 
average velocity ; 
relative velocity ; 
axial co-ordinate axis ; 
transverse co-ordinate axis. 

Greek symbols 

0, electrical conductivity of the fluid; 

P? viscosity ; 
0, non-dimensional time ; 
E. non-dimensional axial co-ordinate axis ; 
II> I, non-dimensional number: 

P? heterogeneous reaction rate parameter 0). 

1. INTRODUCTION 

THE PROBLEM of the dispersion of a soluble matter in 
a viscous, incompressible fluid flowing in a circular pipe 

*Present address: Dept of Mech. Engng, UWIST, CardilT. 
U.K. 

was discussed by Taylor [l-3]. Aris [4] showed that 
the rate of the growth of the variance of the solute 
distribution is proportional to the sum of the molecular 

diffusion coefficient and the Taylor diffusion coefficient. 
Such problems being important from technological 

point of view, this analysis was extended to magneto- 
hydrodynamic channel flows of an electrically 
conducting fluids between non-conducting plates by 

Gupta and Chatterjee [5]. It was observed in [5] that 
the Taylor diffusion coefficient decreases with in- 

creasing the magnetic field. The effects of the con- 
ducting walls on the Taylor diffusion coefficient were 

studied by Soundalgekar and Gupta [6]. 

In all these studies, it was assumed that there is no 
chemical reaction between the solute and the liquid 
during the course of the dispersion. This is one of the 
possible case. However, in practice, in a number of 

problems of technological interest, during the process of 
diffusion of a solute, there does take place some kind of 
chemical reaction. An analysis of a finite first order 
homogeneous reaction in the laminar pipe flow was 
carried out both theoretically and experimentally by 
Cleland and Wilhelm [7]. The corresponding effect of a 

heterogeneous reaction taking place at the wall was 
discussed by Katz [8]. Walker [9]. Soloman and 
Hudson [lo] investigated the combined effect of the 

first-order heterogeneous reactions. This analysis was 
recently extended to the laminar channel flow by Gupta 
and Gupta [ 111. 

It is the object of the present analysis to investigate 

the effects of the first-order homogeneous and hetero- 
geneous reactions on the dispersion of the solute in a 
magnetohydrodynamic channel flow of an electrically 
conducting, viscous fluid between two non-conducting 
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parallel plates. Now, the magnetohydrodynamic 
channel flow works as different device under different 
conditions imposed on the loading parameter. Hence. 
in Section 2, the expression for the velocity profiles in 

terms of the loading parameter is derived and following 
Taylor, the unsteady dispersion of a solute in the 

presence of a chemical reaction is studied. Expression 
for the effective Taylor diffusion coefficient is derived 

under first order homogeneous and the heterogeneous 
chemical reactions and numerical values for the 
function influencing the Taylor diffusion coefficient are 

calculated. 

2. MATHEMATICAL ANALYSIS 

Here the laminar flow of an electrically conducting, 
viscous, incompressible fluids is assumed between two 

parallel plates at z’ = +/I. The magnetic field is 
assumed to be applied parallel to the L-axis and the 
x’-axis coincides with the centerline of the channel. 
Then the velocity profile under no-slip condition is 

given by 

(1) 

K = GE,, B,/( - ?P/;rx’). 

Here K is the loading parameter and M is the 
Hartmann number. Then the average velocity is given 

by 
L 

fiz+ s - UdL = l+K (l+K)tanhM 

M2 M3 
(3) 

-1 

We now assume that during the course of diffusion, 
there is a first order irreversible chemical reaction in 

the liquid under isothermal conditions. Then the 
governing equation for the concentration C of the 
solute is 

where D is the molecular diffusion coefficient, assumed 
constant,and Kl is the first-order reaction rate constant. 
In (4), it is assumed that the solute is present in a small 
concentration and the last term -K1 C/cm-3~-’ 
representing the volume rate of disappearance of the 
solute due to chemical reaction. We now assume that 
a=cla.d= CC d=c/azf2. and the convection is across a 
plane moving with the mean speed of the flow. Then 

relative to this plane. the fluid velocity is given by 

On introducing the following dimensionless quantities 

H = t/i. i = L/U. c = (.Y--111)/L. z = z’:h 

in (4) we have 

where L is a typical length along the direction of the 
flow. Assuming Taylor’s limiting condition, viz. the 
partial equilibrium over any cross section of the 

channel, we have from (6). 

(7) 

where &?/SE may be taken as independent of z. 
Substituting for u, from (5) in (7) and integrating 

twice, the solution of (7) satisfying the conditions 
(‘C!i: = 0 at z = + 1 is 

(8 

where ;j = h(K,/D)‘. 
Thevolumetric rate at which the solute is transported 

across a section of the channel of unit breadth is 

Substituting for C and a, from (8) and (5) respectively 
in (9) and carrying out the integration, we have 

2 sinh 7 tanh M 

M; 

l+K sinh(M+;:)+sinh(M-y) 

i coshM M-t; M-j’ - !1 
2(1+K)=tanh2M 2(1~K)~tanh’M 

_ -_Mh-._ ~.. _ + ~ ~,2;i~--~~ 
.,- i 

2(1 +Kj3 
- ___-~ tanh’ M 

M’(M’- y=) 

+ ~~~,;~osh2 ,(q$+ 1)). (10) 

On comparing (10) with Fick’s law of diffusion. the 
solute is observed to be dispersed relative to a plane 
with the mean speed of the flow with effective dispersion 
coefficient D* given by 

7 

‘o* zz ;F(M. 1’) 
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where 

2 sinh y tanh M _ 
M: 1 

The numerical values of F(M,K, y) are entered in 
Table 1. In calculating the values of F(M,K, y), the 
values of M and y are chosen arbitrarily whereas those 

of K are chosen to represent the physical nature of the 
magnetohydrodynamic channel. The channel con- 

figuration depends upon K as follows : 

1. K = 0. (Short-circuited) 

2. K < 1.0, (MHD generator) 
3. K = 1.0, (MHD flowmeter) 

4. K > 1.0, (MHD accelerator). 

We now give the quantitative estimation of the changes 

that take place due to a change in the values of the 

parameter. Thus, in a mhd generator (K < l.O), we 
observe that for K = 0.2 and y increased from 0.2 to 

06, there is about 92 per cent decrease in the value of 
F(M, K, y) for all M whereas for K = 0.5 or 0.8, there is 
a 91.6 per cent decrease. However, an increase in K 
leads to an increase in F(M, K, y) in a MHD generator. 
In a MHD accelerator, for K = 2, when y is increased 
from 0.2 to 0.6, there is a 89.4 per cent decrease in the 
effective Taylor diffusion coefficient. Also it increases 
with increasing K. However, in all these devices, there is 
a fall in the effective Taylor diffusion coefficient due to 

an increase in M. 

Diffusion with combined homogeneous and heterogeneous 
chemical reaction 

In this case, we assume that in addition to a first- 

order irreversible chemical reaction in the bulk of the 
fluid, there is also similar one at the walls which are 
assumed to be catalytic. Then under Taylor’s limiting 
conditions, equation (7) still governs the diffusion of the 
solute. The boundary conditions at the walls are 

dC 
(13) 

which in non-dimensional form are 

(7c 
z+fiC=O at z=fl (14) 

Table 1. Values of F(K. ;I. M) 

K ;’ 
M 

5 10 15 

@2 0.2 
0.6 
1.0 
1.4 

0.5 0.2 
0.6 
1.0 
1.4 

0.8 0.2 
0.6 
1.0 
1.4 

10. 0.2 
0.6 
1.0 
1.4 

0.552167 x lo-* 
0.442673 x 1O-3 
0.348190x lo-“ 

-0.791929 x 1O-4 

0.122389 x 10-l 
0.103875 x lo-* 
0.138996 x lo- 3 

-@112907x 10m3 

0.246985 x 10-l 
0.221108 x 10-2 
0.404326 x 1O-3 

-0.101777 x 10-A 

0.376002 x IO-’ 
0.346624 x 10 - 2 
0.723694 x lo- 3 

-0.445921 x 1O-4 

2.0 0.2 0.199277 
0.6 0.200754 x 10-l 
1~0 0.567933 x 1O-2 
1.4 0.164885 x lo-’ 

0.866643 x lo-“ 
0.728166x 1O-5 
0.891389 x 1Om6 

-0911847 x 10-C 

0.192177 x 1O-3 
0.171212 x lo-“ 
0.301999 x 10-5 

-0.969173 x 1O-3 

D387870 x 10m3 
0.363954 x 1O-4 
0.807666 x 10 - ’ 
0.586331 x 1O-7 

0.590484 x 10m3 
0.569788 x 10m4 
0.139891 x 1O-4 
0.181675 x 1O-5 

0.312883 x lo-* 
0.327940 x 1O-3 
0.102320 x 1O-3 
0.384932 x 1O-4 

3.0 0.2 0.660984 0.103757 x 10-l 
0.6 0.693383 x 10-l 0.112850 x 10-l 
1.0 0.218172 x 10-l 0.383826 x lo- 3 
1.4 0.852175 x 10m2 0.173395 x 10-3 

0.762252 x 1O-5 
0.653149 x 10mb 
0.916839 x lo-’ 

-0.672258 x lo-’ 

0.169060 x 1O-4 
0.153699 x lo- 5 
0.297912 x 1O-6 

-0.537702x lo-’ 

0.341232 x lo-’ 
0.326548 x lo- 5 
0.777039 x 10-e 
0.700823 x lo-’ 

0519485 x 10m4 
0~510910 x lo- 5 
0.133173 x 1o-5 
0.258466 x 1O-6 

0.275236 x lo-’ 
0.293326 x 1O-4 
0.950733 x 10-S 
0.388042 x 1O-5 

0.912646 x 1O-3 
0~100787 x 10-3 
0.353544 x lo-& 
0.168061 x 10-J 
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Table 2. Values of F(K, ;‘, p, M) 
.~_ ~_.-l.___-__ 

M 
5 10 15 

~ -_~i____-___-_I_-.-.lll-l~- -_-.__. “~.. -_ 
0.2 0.2 

0.5 0.2 

@6 

1.0 

0.8 0.2 

0% 0.6 

1.0 

I.0 

i.0 0.2 

06 

1.0 

2.0 0,2 

0.6 

2.0 14) 

3 
5 
7 
9 
11 

3 
5 
I 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 
5 
9 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 

: 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 
5 
7 

0.532697x IO-'. 0*835229x IO+ o~734325x10-5 
o~S32596xlo-2 0%35065x lo-4 0.734179x 10-s 
O.S32552~10-~ o,~34994xlo-4 0.734116x to-5 
0532S27~10-~ 0.834955~10-~ 0.734081x IO-' 
0~532512~10"~ 0.834930x IO-" 0.734059x 10-S 

0.411932~ lo-‘5 0.669135~ tOm'S 0.597193x 10-G 
0.410691x lo- 3 0~666752~10-~ 0.594934x lo-" 
0~410128x lo-" 0.665671 x !O-" 0~59391oxlo-" 

0.176825~10‘~ 0.504399x lo-.'6 0.529334x lO-' 
@161728x fO+ 0*470296x iO-" 0.495186~ IO-' 
0~154405X lo-" 0.453768~ IO-" 0,478636x1W7 

0~104125X 10"' 0.163163x lo-' 0.143423x10-+' 
0~104029X 10-l 0~163012xlo-" 0.143290x10-" 
0.103988 x IO-' 0.162946~10.'~ 0,143232~10-~ 

O%13157x10"3 0~131407x10-4 0~1~7089x10'-5 
0~804OSlX 10-j 0.129800~ iO-* 0~115611x10-5 
0~799920x10'-3 0.129071 x10+ 0.114941 x10-' 

0.434586x10-“ O~tfOO87~10-~ 0.112973~10-~ 
0~350394xl0-4 @931748x10-5 0.966760x lo-' 
0.309591 x10--* 0.849786x IO-& 0.887776~ lo-' 

0.180338x 10-l 0.282422~ lO-3 @248205x 1O-4 
0~179990x10-" 0~281892X 10-j 0.247720x10-' 
0~179840x10-' 0.281634x lo-' 0,247510~10-~ 

0.144209x IO-' 0.231760x IO+ 0.206137x IO-5 
o~141105xto-z 0~226424X lo"‘* 0~201277xlO-' 
o~139696x10-2 0.224003x IO-' 0~199072X 10'" 

0.106794x fO,^" 0.235666x lo-'" 0.234120~ IO-$ 
0~805741xlO-" 0.185260~ 1O-s 0.186277~ 10-h 
0678671x 1o-4 0~160830~10-~ 0.163090~ IO-6 

0~106794X 10-j 0.235666x 1O-s 0.234120x IO-" 
0.805741 x10-4 0~18526OxlO-" 0~186277~ 1O-6 
0678673 x10-" 0~160830x10-s 0~163090~10-~ 

0~2478?6XIO--' 0~388039X 10-J 0.340981~ IO--" 
0-247207 x 10-j 0~386981 x lO-'j 0~340048x IO-J 
0,246757x10-' 0‘386271~ 1O-3 0.339646~10"' 

0.202206x IO+ 0.323780x IO+ 0-287634x lo-" 
0~196377X 10-Z 0.313852~10-~ 0~298622~10-~ 
0.193732~ lo-" 0.309347x to-4 0.274533~10-~ 

0.182924~ 10-" 0.376457~ 1O-5 O-366941 x10-" 
@135269x 1O-3 0286355x10-* 0.281921~10‘~ 
O~lf2174x10-" 0.242688~ 1O-5 0~240717~ lo-" 

0.847487 x 10"" 0~132412x10-' 0.116278 x 1O"..3 
0-841506x lo-' 0.131469x10-* 0-115448x 10-S 
0%38924x IO--' O~f31062~10-"~ O.li5089x 1O-3 

0.776954x 1o-z 0.122370x 1O-3 0.108095~10-~ 
0.727284x IOX2 0~114073X lo-" 0~1006L9x 10--a 
0.704748 x 10-z 0~110308x 10-j 0.972267~10-~ 

0.138286~ 10 -2 0~240358X it)-* 0~221791x10-'" 
0.100425~ lo-* 0~171371X 1o-4 0~157555X 10-s 
0~820751X 10-S 0~137938x10~-4 0,126423~10-~ 
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where j =fh is now the heterogeneous rate parameter corresponding to catalytic reaction at the walls. Then 
the solution of (7) satisfying (14) is given by 

YsinhY+@coshY 
cash Yz 

(~+~)cosh~~~ 

(M2 -;j2) cash M 

Proceeding as before, we now have the effective 
dispersion coefficient D* given by 

D* = ; F(M, K, y, 6) 

where 

F(M, K Y? B) = 
(1 +IQ3 tanh M 

M3(M2 -Y2) 

X 
- l+K 

cash M i 

sinh(M+Y}~sinh(M-y) 

M+y M-Y > 

2 sinh y tanh M 
- 

My 1 
+Z(l+K)f 

~ tanh’ M 
M6y2 

2(1 +K)3 tanh’ M 

M6 

+ 

2(1 +K)3 tanh* M 

f@(MZ _ YZ) 

(1 $-IQ4 

- M4(MZ - y2) cash’ M 

The numerical values of F(M,X, y,/?) are entered in 
Table 2. We observe from this table that tke effects of 
K and M are the same as described above, the effects of 
the heterogeneous reactions at the wall are more 
prominent at large values of y, i.e. the decrease in D* 

being more as p increases at large Y. 
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