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Abstract—An analysis of the dispersion of a solute in an incompressible, viscous, electrically conducting
fluid flowing between two non-conducting plates, under the action of a transverse magnetic field has been
carried out on the assumption of an homogeneous irreversible first-order chemical reaction and hetero-
geneous reaction. Expressions for the effective Taylor diffusion coefficient have been derived in both cases.
It is observed that the effective Taylor diffusion coefficient decreases due to an increase in the homogeneous
reaction rate constant and also due to an increase in the heterogeneous reaction at the catalytic walls.
An increase in M, the Hartmann number, leads to a decrease in the effective Taylor diffusion coefficient
whereas an increase in K, the loading parameter, leads to an increase in the effective Taylor diffusion
coefficient.

NOMENCLATURE
By,  magnetic induction;
C, concentration of the solute;
D, molecular diffusion coefficient ;

Taylor diffusion coefficient ;

E,, electric field;

h, half-width of the channel;

K, loading parameter;

K,, first-order reaction rate constant;

L, characteristic length ;
M, Hartmann number;
P, pressure;
Q, volume rate of the transport of the solute;
i time, (L/#i);
t, time;
u, axial velocity;
i, average velocity ;
Uy, relative velocity ;
x’, axial co-ordinate axis;
z, transverse co-ordinate axis.
Greek symbols
o, electrical conductivity of the fluid;
U, viscosity ;
0, non-dimensional time;
&, non-dimensional axial co-ordinate axis;
A non-dimensional number;
B, heterogeneous reaction rate parameter (fh).

1. INTRODUCTION

THE PROBLEM of the dispersion of a soluble matter in
a viscous, incompressible fluid flowing in a circular pipe

*Present address: Dept of Mech. Engng, UWIST, Cardiff,
UK.

was discussed by Taylor [1-3]. Aris [4] showed that
the rate of the growth of the variance of the solute
distribution is proportional to the sum of the molecular
diffusion coefficient and the Taylor diffusion coefficient.
Such problems being important from technological
point of view, this analysis was extended to magneto-
hydrodynamic channel flows of an electrically
conducting fluids between non-conducting plates by
Gupta and Chatterjee [5]. It was observed in [5] that
the Taylor diffusion coefficient decreases with in-
creasing the magnetic field. The effects of the con-
ducting walls on the Taylor diffusion coefficient were
studied by Soundalgekar and Gupta [6].

In all these studies, it was assumed that there is no
chemical reaction between the solute and the liquid
during the course of the dispersion. This is one of the
possible case. However, in practice, in a number of
problems of technological interest, during the process of
diffusion of a solute, there does take place some kind of
chemical reaction. An analysis of a finite first order
homogeneous reaction in the laminar pipe flow was
carried out both theoretically and experimentally by
Cleland and Wilhelm [ 7]. The corresponding effect of a
heterogeneous reaction taking place at the wall was
discussed by Katz [8]. Walker [9], Soloman and
Hudson [10] investigated the combined effect of the
first-order heterogeneous reactions. This analysis was
recently extended to the laminar channel flow by Gupta
and Gupta [11].

It is the object of the present analysis to investigate
the effects of the first-order homogeneous and hetero-
geneous reactions on the dispersion of the solute in a
magnetohydrodynamic channel flow of an electrically
conducting, viscous fluid between two non-conducting
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parallel plates. Now., the magnetohydrodynamic
channel flow works as different device under different
conditions imposed on the loading parameter. Hence,
in Section 2, the expression for the velocity profiles in
terms of the loading parameter is derived and following
Taylor, the unsteady dispersion of a solute in the
presence of a chemical reaction is studied. Expression
for the effective Taylor diffusion coefficient is derived
under first order homogeneous and the heterogeneous
chemical reactions and numerical values for the
function influencing the Taylor diffusion coefficient are
calculated.

2. MATHEMATICAL ANALYSIS

Here the laminar flow of an electrically conducting,
viscous, incompressible fluids is assumed between two
parallel plates at z'= +h The magnetic field is
assumed to be applied parallel to the z'-axis and the
x'-axis coincides with the centerline of the channel.
Then the velocity profile under no-slip condition is

given by
_ 14K | cosh Mz "
MV cosh M
where
z=2/h, u il M = hBo+/(a/w)

(Y
ox’ (2)

K = 6E, By/(— @P/x).

Here K is the loading parameter and M is the
Hartmann number. Then the average velocity is given

by
! 1+K
ﬁ=%j udz = TR

(1+K)tanh M
-1 M2 ’

M3

3

We now assume that during the course of diffusion,
there is a first order irreversible chemical reaction in
the liquid under isothermal conditions. Then the
governing equation for the concentration C of the

solute is
ac ac a?C
Chu =D+ )k C 4

ot +u6x’ <5x’“+cz’2> ! )

where D is the molecular diffusion coefficient, assumed
constant,and K; is the first-order reaction rate constant.
In (4), it is assumed that the solute is present in a small
concentration and the last term —K, C/com™3s™!
representing the volume rate of disappearance of the
solute due to chemical reaction. We now assume that
02C/dx"? « 0*C/0z", and the convection is across a
plane moving with the mean speed of the flow. Then
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relative to this plane, the fluid velocity is given by
_ 1+K[tanh M . cosh M2
Uy=U—l=~ —| — — Y- - 1. (5)
M- M cosh M
On introducing the following dimensionless quantities
P=Lin. e¢=(x—it)yL.

c=='th

4= ti.
in (4), we have
1(’C+ux(“'C _beéc K C 6
(00 Lae W? fz? ! (
where L is a typical length along the direction of the
flow. Assuming Taylor’s limiting condition, viz. the
partial equilibrium over any cross section of the
channel, we have from (6),
&2C K h? h e

e = ——y, = (7
(z” D DL ~ (¢

where ¢C/de may be taken as independent of -.
Substituting for u, from (5) in (7) and integrating
twice, the solution of (7) satisfying the conditions
CCiéz=0atz= +1is
h? éC[(1+K)>  tanh M
= - F""*{‘T_—*COS}I 'I':
DL ¢ M (M*—y%)sinhy

N 14+ K coshM: ®)
My?  M?*—3? coshM

M?

1+K {tanhM

where y = h(K,/D)*.
The volumetric rate at which the solute is transported
across a section of the channel of unit breadth is

1
Q=J‘ Cu.d:z. (9)
1

Substituting for C and u, from (8) and (5) respectively
in (9) and carrying out the integration, we have

h? éC (1+K)> tanh M 2sinh ytanh M
DL ée | M (M?—3;?)sinhy

Q= M

1+ K (sinh(M+7) +sinh(M—;')
coshM M+ M-y
2(1+K)?tanh* M N 2(1+K)>tanh* M

oM M

(1+K)* sinh 2M
MYM? 7% cosh> M\ 2M

+1>} (10)

On comparing (10) with Fick’s law of diffusion, the
solute is observed to be dispersed relative to a plane
with the mean speed of the flow with effective dispersion
coeflicient D* given by

) I

D* = — F(M.y)

11
D) (an
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where
3
F(M,K ) = LR __tanb M
M3y (M?—v%sinhy
y 1+K (sinh(M+y) sinh{M—v)
cosh M M+y M-y
2sinhytanh M
My
2(1+K)? ) 2(14+K)?
+ —%;;}T)tanh' M —(—A}—) tanh? M
21+K)?
—G(#T)*‘z—tanth
MO(M*—y7)
(1+K)* sinh2M
- +1
M*M?—y%)cosh? M\ 2M
(12)

The numerical values of F(M,K,y) are entered in
Table 1. In calculating the values of F(M,K,7), the
values of M and y are chosen arbitrarily whereas those
of K are chosen to represent the physical nature of the
magnetohydrodynamic channel. The channel con-
figuration depends upon K as follows:

We now give the quantitative estimation of the changes
that take place due to a change in the values of the
parameter. Thus, in a mhd generator (K < 1-0), we
observe that for K = 0-2 and y increased from 0-2 to
0-6, there is about 92 per cent decrease in the value of
F(M,K,7) for all M whereas for K = 05 or 0-8, there is
a 91-6 per cent decrease. However, an increase in K
leads to an increase in F(M, K, y) in a MHD generator.
In a MHD accelerator, for K = 2, when 7 is increased
from 0-2 to 06, there is a 89-4 per cent decrease in the
effective Taylor diffusion coefficient. Also it increases
with increasing K. However, in all these devices, there is
a fall in the effective Taylor diffusion coefficient due to
an increase in M.

Diffusion with combined homogeneous and heterogeneous
chemical reaction
In this case, we assume that in addition to a first-
order irreversible chemical reaction in the bulk of the
fluid, there is also similar one at the walls which are
assumed to be catalytic. Then under Taylor's limiting
conditions, equation (7) still governs the diffusion of the
solute. The boundary conditions at the walls are
aoc

;if(‘:O at z= +h (13)

1. K =0, (Short-circuited) “

2. K < 1-0, (MHD generator) which in non-dimensional form are

3. K = 10, (MHD flowmeter) ac

4. K > 10, (MHD accelerator). 5 TAC=0 at z= <1 (14)

Table 1. Values of F(K, y, M)
M

K / 5 10 15

02 02 0-552167 x 10~2 0-866643 x 10™* 0762252 x 1073
06 0442673 x 1073 0728166 x 1075 0653149 x 10~ °
1-0 0-348190 x 10~# 0-891389 x 10~° 0916839 x 1077
1-4 —0791929 x 1074 —~0911847 x 10~¢ —0-672258 x 1077

05 02 0122389 x 107! 0-192177x 1073 0169060 x 10~*
0-6 0-103875x 1072 0171212x 107 0-153699 x 103
1-0 0-138996 x 1073 0301999 x 10~ ° 0297912 x 10~¢
14 —0-112907 x 103 —~0969173 % 1073 —0-537702x 10~7

0-8 02 0246985 x 107! 0-387870x 1073 0341232 x 10™#
06 0-221108 x 1072 0-363954 x 104 0-326548 x 103
1-0 0-404326 x 10™3 0-807666 x 10™° 0777039 x 10~°
14 —0-101777x 1073 0-586331 x 1077 0-700823 x 10~7

10 02 0-376002 x 102 0-590484 x 1073 0-519485x 10~
06 0-346624 x 1072 0-569788 x 10~ 4 0:510910x 1073
1-0 0723694 x 1073 0-139891 x 10~# 0133173 x 1073
14 — 0445921 x 10™4 0-181675x 1073 0258466 x 107°

2:0 0-2 0-199277 0-312883 x 1072 0275236 x 1073
06 0200754 x 10! 0327940 x 1073 0-293326 x 10°*
10 0-567933 x 1072 0-102320x 1073 0950733 x 1073
1-4 0-164885x 1072 0-384932x 10~4 0-388042 x 10~°

30 02 0660984 0-103757x 107! 0912646 x 1073
06 0693383 x 107! 0112850 x 1072 0-100787 x 1073
1-0 0218172x 107! 0-383826x 1073 0353544 x 10™*
1-4 0-852175x 10°2 0-173395x 1073 0168061 x 10™¢
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Table 2. Values of F(K, 7, . M)
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0532697 x 102
0532596 x 1072
0-532552x 1072
(532527 x 102
(-532512x 1072
0-411932x 103
0410691 x 1073
0-410128 x 1072
0176825 x 10™4
0161728 x 107
0154405 x 107*

0-104125 % 10™!
0-104029 x 107!
0-103988 x 101

0-804051 x 1073
0799920 x 103
0434586 x 104
(r350394 x 107
0-309591 < 107+

0-180338 x 10!
0179990 x 101
0-179840 x 1071

0-144209 x 1072
0-141105x 102
0139696 x 1072
0-106794 x 103
0-805741 x 10~ *
0-678671 x 1074
0106794 x 1073
0-805741 x 107¢
0678671 x 10°#

0-247876 < 10!
0-247207 x 107!
0246757 % 101
0202206 x 102
0-196377 x 1072
0193732 x 1072
0182924 < 10772
0-135269 x 1073
0112174 x 1072

0847487 x 10~ !
0-841506 x 10~
0838924 % 107!
0776954 x 1072
0-727284 x 1072
0704748 x 1072

0138286 x 1072
0:100425 x 102
0820751 x 1073

0-835229 x 10™*
0-835065 x 104
0834994 x 1074
0-834955 x 10~
0-834930 % 10™*
0-669135x 10~ 5
0-666752 x 1073
0665671 x 10™*
0-504399 x 10~¢
0-470296 x 106
0-453768 x 107°

0163163 x 1073
0163012 % 1073
0162946 x 103
0131407 x 1074
0-129800 x 10~#%
0129071 x 10™#
0-110087 x 10~3
0931748 x 10™°
0-849786 x 10™¢

0:282422 x 1073
0281892 x 1073
0281634 x 1073

0-231760 x 10™*
0226424 x 107*
0-224003 x 10~ *
0235666 % 107
0185260 % 10~*
0160830 x 1075
0-235666 x 1073
0185260 x 103
0-160830x 1073

0-388039 x 103
0386981 x 103
0-386271 x 1073
0-323780 % 1074
0313852 x 104
0-309347 x 107*
0-376457 x 107°
0286355 x 107°
0242688 x 107%

0132412 x 1072
0131469 x 1072
0131062 x 1072

0:122370x 1073
0114073 x 1073
0-110308 x 107*

0-240358 % 104
0171371 x 10~
0137938 x 1074

0734325 % 1073
0-734179 x 10~%
0734116 x 103
0734081 x 10°°
0734059 % 10~ ¢
0597193 x 107¢
0-594934 % 107°
0-593910x 10™°
0-529334 % 10~
0-495186 x 10~
0478636 x 1077

0143423 x 10™%
0143290 % 1074
0143232 x 1074
0117089 x 103
0115611 x 10~
0114941 x 107°
0112973 x 107¢
0966760 x 10~
0887776 x 1077

0-248205x 107+
0247720 107#
0247510x 1074

0206137 % 1073
0201277 x 1072
0199072 x 1073
0234120 % 107¢
0186277 x 1079
0163090 % 10™°
0234120 % 1076
0186277 x 107¢
0-163090 x 106

0-340981 x 107
0340048 x 10™*
0-339646 x 10~
0287634 x 10™*
0-298622x 10~
0:274533 % 107
0-366941 x 10~
0281921 x 10~*
0240717 x 10~°

0116278 x 1073
0-115448 x 103
0115089 x 1073

0-108095 x 104
0100619 x 1074
0972267 x 10™°*

0-221791 % 10™%
0-157555x 107 ¢
0126423 % 107%
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where f = fh is now the heterogeneous rate parameter corresponding to catalytic reaction at the walls. Then

the solution of (7) satisfying (14) is given by

(1+K)? B(1+K)/tanhM 1+K
i focy| mar—A 2 M e T Ty
] - coshyz
DILA 8¢ ysinhy+ Bcoshy
1+K {tanhM (1+K)coshM: (15)
M2 | My?  (M*—3YcoshM -

Proceeding as before, we now have the effective
dispersion coefficient D* given by
h2
D* = _F(M7K,Y5B)
D
where

3
FM.K,7.B) = [(1 +K)* tanh M

M3(M?—y%)
+ﬁ(1+K)2<tanhM+ 1+K )]
Md- M'}?Z MZ'__,})Z
x[ 1+K /sinh(M+y}+sinh(M—'y))
coshM\ M+y M-~y
2sinhytanh M
"T]

2(1+K)?
Ry
M>y
2(1+K)*tanh®> M
e
2{(1 +K)* tanh* M
Mﬁ( MZ _ ,},2)
(1+Ky* sinh2M+1
M*M? —yHcosh® M\ 2M )
The numerical values of F(M,K,y,5) are entered in
Table 2. We observe from this table that the effects of
K and M are the same as described above, the effects of
the heterogeneous reactions at the wall are more

prominent at large values of vy, i.e. the decrease in D*
being more as § increases at large y.

tanh? M
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